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E. Epelbaum1,a, A. Nogga2,b, W. Glöckle1,c, H. Kamada3,d, U.-G. Meißner4,e, and H. Wita�la5,f

1 Ruhr-Universität Bochum, Institut für Theoretische Physik II, D-44870 Bochum, Germany
2 Department of Physics, University of Arizona, Tucson, AZ 85721, USA
3 Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho,

Tobata, Kitakyushu 804-8550, Japan
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Abstract. Nucleon-nucleon (NN) forces from chiral perturbation theory at next-to-leading (NLO) and
next–to–next-to-leading order (NNLO) are applied to systems with two, three and four nucleons. At NNLO,
we consider two versions of the chiral potential which differ in the strength of the two-pion exchange (TPE)
but describe two nucleon observables equally well. The NNLO potential leads to unphysical deeply bound
states in the low partial waves and effects of the 3N forces, which appear first at this order, are expected to
be large. We provide arguments for a reduction of the TPE potential and introduce the NNLO* version of
the NN forces. We calculate nd scattering observables as well as various properties of 3H and 4H with the
NNLO* potential and find good agreement with the data and with predictions based upon the standard
high-precision potentials. We find an improved description of the 3H and 4H binding energies.

PACS. 21.45.+v Few-body systems – 21.30.-x Nuclear forces – 27.10.+h A ≤ 5 – 25.10.+s Nuclear
reactions involving few-nucleon systems

1 Introduction

Nuclear forces are derived in the chiral effective field the-
ory approach in terms of an expansion in powers of Q/Λχ,
where Q corresponds to a generic external momentum
of nucleons and Λχ represents the typical hadronic scale
(scale of chiral symmetry breaking) of the order of 1 GeV.
That ratio is less than one if one considers processes with
sufficiently low external momenta of the nucleons. In order
to exclude contributions of high-momentum components
in intermediate states, the nucleon-nucleon (NN) potential
is multiplied by a regulator, which suppresses momenta
larger than a certain cut-off Λ [1]. The latter has to be
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chosen below the scale Λχ
1. The cut-off Λ should also not

be taken too small in order not to suppress the relevant
physics. The various coupling constants depend on the
cut-off Λ in a way to compensate the changes in the low-
energy observables induced by varying Λ. The remaining
cut-off dependence of the observables can be removed by
adding higher-order terms to the effective potential [1].
Assuming naturalness for the various renormalized cou-
pling constants in the underlying Lagrangian one can ex-
pect that contributions to the NN forces corresponding
to higher powers ν of the chiral expansion will decrease.
This sort of nuclear interactions based on the most gen-
eral chiral invariant effective Lagrangian formed out of
pion and nucleon fields has been first proposed in [4] and
formulated in detail in [5]. We followed a similar path,
however extracting the nuclear forces from the Lagrangian
in a different way. We refer to [6] where two- and three-
nucleon potentials have been derived using the method
of unitary transformation. That method leads to energy

1 In some cases it turns out to be possible to perform stan-
dard renormalization of the theory by taking the cut-off Λ to
infinity [2,3].
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independent and Hermitian nuclear forces which are bet-
ter suited for applications to systems with A > 2 than
energy-dependent forces derived in old-fashioned time-
ordered perturbation theory like in [5]. In [7] we applied
the forces at next-to-leading order (NLO), corresponding
to (the counting index) ν = 2, to the 3N and 4N sys-
tems. At this order NN phase shifts can be described only
at rather low energies and only modestly. Nevertheless,
3N and 4N binding energies were found to be within the
same range as the ones found with high-precision modern
NN forces and also nd elastic and break-up observables at
very low energies are similar to predictions generated by
conventional forces. At that order the experimental nu-
cleon analyzing power Ay is fairly well reproduced, which
for conventional NN forces poses a serious puzzle [8]. This
result, however, has to be considered as an intermediate
step, corresponding just to NLO, where the 3Pj NN phase
shifts could not be reproduced with sufficient accuracy. It
is now of strong interest to explore the chiral forces in 3N
and 4N systems at next–to–next-to-leading order (NNLO)
corresponding to ν = 3 where the NN phase shifts are
better reproduced. For the convenience of the reader we
review briefly the NN forces in LO (ν = 0), NLO and
NNLO in sect. 2.

It has been already pointed out in [9] that the strong
central attraction caused by the numerically large values
of the LECs c1, c3, and c4 as determined in a Q3 analy-
sis of πN scattering leads to spurious deeply bound states
in various two-nucleon angular-momentum states. Though
this has no observable consequences in the NN system
within the realm of validity of the theory it is technically
somewhat disturbing in treating 3N and 4N systems. Also
ignoring 3N forces, which occur at NNLO the first time,
and exploring only the NNLO NN forces leads to strong
deviations from 3N data as we will show. It has to be ex-
pected that this will be remedied by including the NNLO
3N forces, which necessarily have to be taken into account
at that order. Various consequences of the large values of
the ci’s as well as the current situation in relation to the
determination of the ci’s from other processes (such as πN
scattering) are discussed in sect. 3. Motivated by the find-
ings of the boson exchange (BE) models of the nucleon-
nucleon interaction, we constructed the NNLO* potential
by removing the ∆ content from the LECs c3 and c4 and
refitting the contact interactions. The new values of the
ci’s resulting from subtracting the ∆ contributions lead to
the NNLO* potential which is free of spurious NN bound
states for the cut-off range considered. The resulting NN
phase shifts as shown in sect. 3 are significantly improved
as compared to the NLO result. We also discuss in this sec-
tion various deuteron properties. It should be mentioned
that all these conclusions are based on the type of regu-
lator we employ in the Lippmann-Schwinger equation. It
cannot be excluded at present that a regulator can be con-
structed that allows for using the large ci without leading
to deep virtual bound states. However, if such regulariza-
tion exists, it has to look very different than the commonly
employed regulator functions.

Fig. 1. Leading-order (LO) contributions to the NN potential:
one-pion exchange and contact diagrams. Graphs which result
from the interchange of the two-nucleon lines are not shown.
Solid and dashed lines are nucleons and pions, respectively.
The heavy dots denote the vertices with ∆i = 0.

We then switch to the 3N and 4N systems and briefly
demonstrate in sect. 4 the predictions corresponding to
the NNLO potential. As already stated before, neglecting
the 3N forces leads to strong deviations from the data.

The central results of our paper, namely the applica-
tion of the NNLO* potential to predict 3N and 4N observ-
ables, are presented in sect. 5. All these results have to be
supplemented in the future by the inclusion of the three
types of topologically different 3N forces which occur at
NNLO. This additional extensive investigation is left to a
forthcoming paper. We summarize briefly in sect. 6.

2 Few-nucleon forces in chiral effective field
theory

Starting from the most general chiral invariant effective
Hamiltonian density for pions and nucleons one can derive
nuclear forces by eliminating the pions through a method
of unitary transformation [6]. Since this transformation
acts on the field-theoretical Hamiltonian, it leads to an
energy-independent effective Hamiltonian in the pure nu-
cleonic space. The condition for decoupling the purely
nucleonic Fock space states from the ones with pions, a
non-linear decoupling equation, can be linearized by in-
troducing a series of orthonormal subspaces with different
number of pions leading to an infinite set of coupled equa-
tions determining the unitary operator. Those equations
can be solved recursively. Thereby the basic organization
principle is a counting scheme in powers of momenta and
number of pions. We refer to [6] for the detailed steps. No-
tice also that the relativistic 1/m corrections are assumed
to be suppressed compared to the 1/Λχ ones, see [4]. Fur-
ther, we will consider only the isospin invariant case in
this section. Isospin-violating effects can be treated along
the lines presented in refs. [10,11]. The resulting nucleonic
potentials are ordered by the power

ν = −4 + En + 2L+
∑

i

Vi∆i, (2.1)

where En, L and Vi are the numbers of external nucleon
lines, loops and vertices of type i, respectively. Further,
the quantity ∆i, which defines the dimension of a vertex
of type i, is given by

∆i = di +
1
2
ni − 2, (2.2)
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Fig. 2. First corrections at NLO to the NN potential in the projection formalism: two-pion exchange diagrams. For notations
see fig. 1.

with di the number of derivatives or Mπ insertions and ni

the number of nucleon lines at the vertex i. The inequality
∆i ≥ 0 holds true as a consequence of chiral invariance.
This leads to ν ≥ 0 for processes with two and more nu-
cleons. One also recognizes that the diagrams with loops
are suppressed and that (n + 1)-nucleon forces appear at
higher orders than n-nucleon forces.

Let us now consider first several orders of the NN force.
At leading order ν = 0 (LO) only tree diagrams with
vertices of ∆i = 0 (πNN vertex with one derivative and
two independent four-nucleon contact interactions with-
out derivatives) are allowed, see eq. (2.1). Consequently,
the LO chiral potential is given by the well-established
one-pion exchange (OPE) and contact forces with the low-
energy constants (LECs) CS and CT , as shown in fig. 1

V
(0)
cont = CS + CTσ1 · σ2,

V
(0)
OPEP = −

(
gA
2fπ

)2

τ 1 · τ 2
�σ1 · �q �σ2 · �q
q2 +M2

π

. (2.3)

Here �p and �p ′ are the initial and final momenta of the
nucleons in the CM frame and �q = �p ′−�p. Further,Mπ, gA,
and fπ are the pion mass, the axial pion-nucleon coupling
constant and the pion decay constant, respectively.

At next-to-leading order (NLO) or ν = 2 there are
TPE diagrams with the leading πNN vertices with ∆i = 0
according to fig. 2 and seven contact forces with vertices
of ∆i = 2 containing two derivatives2, see fig. 3. It should
be emphasized at this stage, that the expression (2.1) only
allows to estimate the order of the corresponding process.
It is, however, not possible to read off the precise structure

2 The contact interactions with one insertion of M2
π are for-

mally indistinguishable from the four-nucleon operators with-
out derivatives and lead to renormalization of the constants
CS , CT . We will not consider such operators explicitly.

of the operators (i.e. the corresponding energy denomina-
tors and overall factors) related to a particular diagram.
This is because the presented figures refer to diagrams
within the method of unitary transformation and not to
ordinary graphs in the old-fashioned perturbation theory.
The precise operator form of the NLO and NNLO con-
tributions to the 2N and 3N potentials can be found in
ref. [6]. Note also that the graphs 9 and 10 in fig. 2 are
not reducible ones in the sense that no energy denomina-
tors related to purely nucleonic intermediate states appear
in the corresponding expressions; see [6] for more details.

In addition, there are nucleon self-energy contributions
and vertex corrections [6], which renormalize the one-pion
exchange and contact forces, which we do not show ex-
plicitly here. The TPE terms shown in fig. 2 lead to poly-
nomial parts with, in general, infinite coefficients, which
renormalize various contact interactions, and to finite non-
polynomial ones, which are finite and independent of the

Fig. 3. First corrections to the NN potential: contact diagram
at next-to-leading order (NLO). The filled diamond denotes
seven vertices of ∆i = 2 (with two derivatives). For remaining
notations see fig. 1.



546 The European Physical Journal A

1                                      2                                      3                                      4

5                                      6                                      7                                      8

9 10 11 12

13 14 15 16

Fig. 4. Leading contributions to the three-nucleon potential at NLO, which cancel: two-pion and one-pion exchange diagrams
with the NN contact interaction. Graphs which result from the interchange of the nucleon lines and/or from the application of
time reversal operation are not shown. In the case of diagram 16, one should sum over all possible time orderings. For remaining
notations see fig. 1.

regularization scheme used. The resulting potential reads

V
(2)
cont = C1�q

2 + C2
�k2 +

(
C3�q

2 + C4
�k2

)
(�σ1 · �σ2)

+iC5
1
2

(�σ1 + �σ2) · (�q × �k)
+C6(�q · �σ1)(�q · �σ2) + C7(�k · �σ1)(�k · �σ2),

V
(2)
TPEP = − τ 1 · τ 2

384π2f4
π

L(q)
{

4M2
π(5g4A − 4g2A − 1)

+q2(23g4A − 10g2A − 1) +
48g4AM

4
π

4M2
π + q2

}

− 3g4A
64π2f4

π

L(q)
{
�σ1 · �q �σ2 · �q − q2�σ1 · �σ2

}
, (2.4)

where

L(q) =
1
q

√
4M2

π + q2 ln

√
4M2

π + q2 + q
2Mπ

, (2.5)

and �k = 1/2(�p ′ + �p ). There are seven LECs C1 to C7

related to contact interactions with two derivatives, see
fig. 3.

At that order NLO 3N forces of the topologies shown
in fig. 4 cancel. Note that this cancellation is of differ-
ent type than the one found in time-ordered perturba-
tion theory [12,13]. To be more precise, in that order the
contribution of the “irreducible” two-pion (one-pion) ex-
change diagrams 1–8 (13) cancels against the “reducible”
two-pion (one-pion) exchange graphs 9–12 (14, 15). The
last graph 16 in this figure is proportional to the kinetic
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Fig. 5. Next–to–next-to-leading order (NNLO) corrections to the NN potential. The filled squares denote the vertices with
∆ = 1. For remaining notations see figs. 1, 3.

energy of the nucleons and contributes therefore only at
higher orders [4].

At NNLO (ν = 3) there occur new ππNN vertices
with ∆i = 1, which contain either two derivatives or one
M2

π insertion and are parametrized by three constants,
denoted in the commonly used notation by c1, c3, and
c4 (the c2-term does not contribute at this order) [14].
They enter into the TPE NN force as shown in fig. 5 as
well as into vertex correction diagrams (not shown), which
renormalize the OPE, and also into the TPE 3N force
shown in fig. 6. The explicit expression for the two-pion
exchange NN force at NNLO is3

V
(3)
TPEP = − 3g2A

16πf4
π

{
− g2AM

5
π

16m(4M2
π + q2)

+
(

2M2
π(2c1−c3)−q2

(
c3+

3g2A
16m

))(
2M2

π +q2
)
A(q)

}

− g2A
128πmf4

π

(τ 1 · τ 2)
{
− 3g2AM

5
π

4M2
π + q2

+
(
4M2

π + 2q2 − g2A
(
4M2

π + 3q2
))(

2M2
π + q2

)
A(q)

}

+
9g4A

512πmf4
π

(
(�σ1 · �q )(�σ2 · �q ) − q2(�σ1 · �σ2)

)

×(2M2
π + q2)A(q)

− g2A
32πf4

π

(τ 1 · τ 2)
(
(�σ1 · �q )(�σ2 · �q ) − q2(�σ1 · �σ2)

)

×
{(
c4+

1
4m

)(
4M2

π +q2
)− g2A

8m
(
10M2

π + 3q2
)}
A(q)

− 3g4A
64πmf4

π

i(�σ1 + �σ2) · (�p ′ × �p )
(
2M2

π + q2
)
A(q)

−g
2
A(1 − g2A)
64πmf4

π

(τ 1 · τ 2)i(�σ1 + �σ2) · (�p ′ × �p )

×(
4M2

π + q2
)
A(q), (2.6)

where
A(q) =

1
2q

arctan
q

2Mπ
. (2.7)

Altogether there are 9 LECs at NNLO (and at NLO) re-
lated to various contact interactions, which have to be fit-
ted by adjusting the NN force to the NN data. The LECs

3 Note that we included here the 1/m corrections, which are
formally of higher order.

1                                     2                                      3

Fig. 6. Three-nucleon force: TPE, OPE and contact interac-
tion. In the cases of diagrams 1 and 2, all possible time or-
derings should be taken into account. For notations see figs. 1
and 5.

c1,3,4 which first appear at NNLO occur also in πN scat-
tering and that information should be consistently taken
into account.

The 3N force at NNLO consists of three different
topologies as shown in fig. 6. Besides the TPE there is a
pion exchange between a NN contact force and the third
nucleon and a pure 3N contact force. In both cases new
vertices of ∆i = 1 with unknown constants enter. The
precise structure of the chiral 3NF will be discussed in a
forthcoming paper.

Chiral forces are only valid in a low-momentum region.
We enforce this by modifying the above given NN force
expressions as

V (�p ′, �p ) −→ fR(�p ′)V (�p ′, �p )fR(�p ), (2.8)

where fR(�p) is a regulator function. In what follows, we
work with the following regulator function:

f expon
R (�p ) = exp

[ − p4/Λ4
]
. (2.9)

The power four in the exponent guarantees that the Q0-,
Q2- and Q3-terms in the potential are not affected by the
regularization procedure. As already pointed out before,
the dependence of the low-energy observables on the value
of the cut-off Λ should get weaker with increasing the or-
der ν.

3 Two nucleons at next–to–next-to-leading
order

We now turn to the analysis of the 2N system at NNLO.
Let us first specify the parameters entering the NN po-
tential. The largest uncertainty is related to contact in-
teractions between nucleons. They are not restricted by
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chiral symmetry, but only by the general principles of
locality, invariance under Lorentz transformations, par-
ity, time-reversal invariance and Hermiticity. At NLO and
NNLO one has to take into account nine independent con-
tact operators contributing to the effective potential: two
operators without derivatives (V (0)

cont in eq. (2.3)) and seven
with two derivatives of nucleon fields (V (2)

cont in eq. (2.4)).
The corresponding LECs are fixed by a fit to S- and P -
wave phase shifts and to ε1 at low energies. The OPE
(V (0)

OPEP in eq. (2.3)) as well as the leading chiral TPE at
NLO (V (2)

TPEP in eq. (2.4)) are parameter free.
As already stressed before, the subleading TPE at

NNLO, V (3)
TPEP in eq. (2.6), depends on the LECs c1,3,4,

which correspond to ππNN vertices of dimension ∆i = 1.
Precise numerical values for these constants are crucial for
various properties of the effective NN interaction as will
be discussed below. Clearly, the subleading ππNN vertices
represent an important link between NN scattering and
other processes, such as πN scattering. Therefore, ideally,
one would like to take their values from the analysis of the
πN system, as was done in [9]. We will now briefly overview
the current situation concerning the determination of the
ci’s from the πN system. Several calculations for πN scat-
tering have been performed and published. From the Q2

analysis [15] one gets: c1 = −0.64, c3 = −3.90, c4 = 2.25.
Here all values are given in GeV−1. From different Q3 cal-
culations [15–19] one obtains the following bands for the
ci’s:

c1 = −0.81 . . . −1.53, c3 = −4.70 . . .− 6.19,
c4 = 3.25 . . . 4.12. (3.1)

These bands are also consistent with expectations from
resonance saturation, see [16]. Recently, the results from
a Q4 analysis have become available [20]. At this order the
S-matrix is sensitive to 14 LECs (including c1,3,4), which
have been fixed from a fit to πN phase shifts. At this order
the dimension two LECs acquire a quark mass renormal-
ization. The corresponding shifts are proportional to M2

π .
It turns out that different phase shift analyses (PSA) from
refs. [21–23] lead to sizable variations in the actual values
of the LECs. A typical fit based on the phases of ref. [22]
leads to

c̃1 = −0.27 ± 0.01, c̃3 = −1.44 ± 0.03,
c̃4 = 3.53 ± 0.08, (3.2)

where c̃i denote the renormalized ci’s. However, using the
older Karlsruhe or the VPI phases as input, one finds siz-
able variations in the c̃i. Alternatively, one can also keep
the ci at their third-order values and fit the fourth-order
corrections separately, see [20]. Due to the uncertainties
in the isoscalar amplitudes, these constants are not very
well determined. The fits could, in principle, be improved
in the future by including the scattering lengths deter-
mined from pionic hydrogen/deuterium. To complete the
discussion on determination of the ci’s from the πN sys-
tem we would like to stress that numbers consistent with
the bands given in eq. (3.1) have been obtained in [24]

using IR regularized baryon chiral perturbation theory at
order Q3 and dispersion relations.

Rentmeester et al. [25] tried to fix the values of the
ci’s from an analysis of the pp data, which are of a much
better quality than the πN data. In this approach the
long-range part of the NN force was taken as the sum of
the OPE and the chiral TPE (including the NNLO con-
tribution). The NN interaction at short distances below
some boundary value was parametrized by some artifi-
cial energy-dependent representation. The global fit to the
data allowed to pin down the values of the ci’s (and, of
course, also of the parameters related to the short-range
part of the NN force). It turned out that it is not pos-
sible to fix all three ci’s in this process because of the
strong correlation between these LECs. For that reason
the constant c1 was fixed at the value c1 = −0.76 GeV−1

(to obtain a small pion-nucleon σ-term of about 40 MeV)
and the LECs c3,4 were treated as free parameters. The
values of the c3,4: c3 = −5.08 GeV−1, c4 = 4.70 GeV−1 de-
termined from the global fit to the pp data are compatible
with the Q3 calculation from the πN system, see eq. (3.1).
Note, however, that this method is not directly based on
a systematic chiral power counting.

Having overviewed the current status of the determi-
nation of the ci’s from various processes, we are now in the
position to discuss the corresponding implications for the
NN system. First of all, it turns out that the numerical val-
ues of the ci’s are quite large. Indeed, from a dimensional
analysis one would expect, for example, the constant c3 to
scale like

c3 ∼ �

2Λχ
, (3.3)

where � is some number of order one. Taking the value
c3 = −4.70 from ref. [19] and Λχ = Mρ = 770 MeV we
end up with � ∼ −7.5. Such a large value can be partially
explained by the fact that the c3,4 are to a large extent
saturated by the ∆ excitation. This implies that a new
and smaller scale, namely m∆ −m ∼ 293 MeV, enters the
values of these constants, see [16].

What are the consequences of the large numerical val-
ues of the ci’s for NN scattering? The main problem is
that the large numerical values of the ci’s might lead to
a slow convergence of the low-momentum expansion. To
get a feeling of the possible problems one can compare, for
instance, the low-momentum matrix elements of, say, the
central parts of the TPE at NLO and NNLO. Taking the
values of the ci’s from the Q3 analysis of the πN system
from ref. [19]

c1 = −0.81 GeV−1, c3 = −4.70 GeV−1,

c4 = 3.40 GeV−1, (3.4)

as we did in [9] one gets from eqs. (2.4), (2.6):

V
cent, (2)
TPE (q)

∣∣∣∣
q=0

=(τ 1 ·τ 2)
M2

π

(4πfπ)2f2
π

(
1+4g2A−8g4A

)
6

∼ (τ 1 ·τ 2)(−3.4) GeV−2, (3.5)
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Fig. 7. 1D2 and 3D2 phase shifts calculated with the CD-
Bonn potential. The dashed lines show the Born approxima-
tion, whereas the solid lines correspond to the full solution
of the Lippmann-Schwinger equation. The filled triangles are
Nijmegen PSA results [26].

V
cent, (3)
TPE (q)

∣∣∣∣
q=0

=
M2

π

(4πfπ)2f2
π

( − 3g2Aπ
)
(2c1−c3)Mπ

∼ −10.3 GeV−2. (3.6)

Here we neglected all 1/m corrections. While the order
of the matrix element of the potential at NLO agrees with
the one expected from dimensional analysis, V cent, (2)

TPE ∼
(τ 1 · τ 2)�1M2

π/(Λ
2
χf

2
π) with �1 ∼ −0.9, the NNLO matrix

element appears to be larger than expected: V cent, (3)
TPE ∼

�2M
3
π/(Λ

3
χf

2
π), where �2 ∼ −14.3. Such a deviation from

the natural value for �2 of order one does, however, not yet
necessarily mean a failure of the perturbative expansion,
since the potential itself is not an observable quantity. To
draw a precise conclusion about the convergence proper-
ties of the low-momentum expansion one should look at
the phase shifts, which can be measured directly. Further,
up to now we only compared the non-polynomial contri-
butions to the potential and omitted all contact terms4.
Large numerical values of the low-momentum matrix ele-
ments of the VTPE at NNLO could, in principle, be com-
pensated by the corresponding contact terms. However,
such a compensation at NNLO is only possible for S- and
P -waves as well as for ε1 since the contact terms do not
contribute toD and higher partial waves at this order. The
D- and F -waves may therefore serve as a sensitive test of

4 Note that the contact interactions are needed to renormal-
ize the TPE contribution and thus cannot be omitted for con-
ceptual reasons.

Fig. 8. 1D2 and 3D2 phase shifts at NNLO using the values
of the ci’s from ref. [19]. The dashed lines show the Born ap-
proximation, whereas the solid lines correspond to the iterated
solution with the exponential cut-off Λ = 1000MeV. The filled
triangles are Nijmegen PSA results [26].

the chiral TPE exchange5. The conventional scenario of
nuclear forces represented by existing OBE models and
various phenomenological potentials suggests that the D-
and higher partial-wave NN interactions are weak enough
to be treated perturbatively. This is demonstrated in fig. 7
on the example of the CD-Bonn potential. Although this
observation is confirmed by the smallness of the corre-
sponding phase shifts, such a scenario, strictly speaking,
does not necessarily need to be realized. In fact, the NNLO
results can serve as a counter example: with the values of
the ci’s from eq. (3.4), the Born approximation for the
S-matrix, for instance, in the 1D2 partial wave deviates
strongly from the data already at Elab ∼ 100 MeV, see
fig. 8. Note that this result is parameter free and cut-
off independent6. Similar results have been published in
ref. [27]. On the other hand, as we showed in [9], tak-
ing the cut-off of the order of 1 GeV allows for a satisfac-
tory description of all partial waves simultaneously. With
such a large value of the cut-off, the central TPE poten-
tial becomes already so strongly attractive that unphys-
ical deeply bound states appear in the D-waves as well
as in the lower partial waves. Since the potential is very
strong (and attractive) and there are no counter terms

5 This has been suggested by Kaiser et al. in [27,28].
6 Since we do not iterate the potential, we do not need to

multiply it with the regulating function. Strictly speaking, of
course, the EFT is only defined with the cut-off procedure
which would lead to the results in Born approximation be-
ing multiplied with an overall factor. For simplicity, we ignore
this factor here.
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Fig. 9. 1F3 and 3F3 partial waves at NNLO using the values
of the ci’s from ref. [19]. For notations, see fig. 8. The filled
triangles are Nijmegen PSA results [26].

according to the power counting, changing the value of
the cut-off clearly leads to strong variation of the D-wave
phase shifts. This is illustrated and discussed in more de-
tail in [9,29]. Note that this problem of the strong cut-
off dependence does not show up in lower partial waves,
where it is compensated by the cut-off dependence of the
contact counter terms. In the F -waves, where the poten-
tial is already sufficiently weak (if the cut-off Λ is chosen
smaller or of the order of 1 GeV) and the Born approxi-
mation already does a good job, one has no problems with
the cut-off dependence as well. This is shown in fig. 9. In
spite of this fact one observes sizable deviations for most
of the F -wave phase shifts from the Nijmegen PSA for
energies larger than Elab ∼ 150 MeV [9]. Thus, the only
serious difficulty caused by the large values of the ci’s in
the NNLO analysis of the NN system is related to the
cut-off dependence of the D-wave phase shifts.

The large numerical values of the ci’s have also some
consequences for three- and more-nucleon systems, which
will be discussed in detail in the next section. Here we only
emphasize that effects from the inclusion of the 3N forces
are expected to be much larger than in the standard sce-
nario of nuclear physics. Note, however, that the separate
contributions of the 2N and 3N forces to 3N observables
cannot be measured experimentally.

Let us now briefly summarize the consequences of the
inclusion of the NNLO TPE with the large values of the
ci’s taken from the Q3 analysis of the πN system [19]:

– First of all, including the subleading TPE allows for
significant improvement in the description of the low-
energy observables in the NN system compared to
NLO without introducing additional parameters, see

ref. [9] for more details. The phase shifts are mostly
well reproduced.

– The central part of the potential shows a much
stronger attraction than the one found in conventional
models of the NN interaction [27]. As a consequence,
one has unphysical deeply bound states in the low NN
partial waves.

– The predictions for D-waves depend on the cut-off.
The optimal result is obtained for Λ = 1000 MeV
using the exponential regulator. The potential pro-
jected onto the D-waves is strong and requires non-
perturbative summation via the Lippmann-Schwinger
equation. The predictions for F -waves deviate from the
data at energies larger than Elab ∼ 150 MeV. In con-
trast, the peripheral waves are well described [27].

– One expects large effects from the 3NF.

Although the NNLO scenario dictated by the large values
of the ci’s differs strongly from our expectations based
on the experience with various phenomenological boson
exchange models, one cannot exclude this possibility a
priori. Indeed, the only serious problem with the large
ci’s is given by the strong cut-off dependence of the D-
wave phase shifts. However, this will probably not (or only
weakly) affect chiral predictions for experimentally mea-
sured quantities like the cross-section, analyzing powers,
etc. at low energies, where the contribution of the corre-
sponding phases to physical observables is rather small.
Further, as already discussed in detail in ref. [9], at N3LO
it will be cured by dimension four contact interactions.
Furthermore, the failure of the NNLO potential to de-
scribe various properties in the 3N and 4N systems does
not yet indicate a problem, since we have not included the
3NF. Because of the calculational difficulties in the treat-
ment of the 3N and 4N systems in the presence of deeply
bound states it will take some time before all the impli-
cations of the chiral EFT at NNLO using the large values
of the ci are explored in detail. These calculations need
to be done but will require a large amount of computing
time.

Having discussed consequences of the large values of
the ci’s for various properties of few-nucleon systems, we
can ask ourselves, how confident we are, that the discussed
scenario is indeed realized? Several comments are in order:

– First of all, we would like to stress the uncertainty in
the determination of the ci’s from πN scattering. The
difference between the ci’s from the second- and third-
order analyses of πN scattering is considered to be an
effect of third order, i.e. it should be suppressed by
one power of Q compared to the second-order values
of the ci’s. For that reason one can equally well take
the Q2-values of the ci’s in the NNLO analysis of the
NN system, since the ci’s enter only the NNLO and
not the NLO contribution to the effective potential. In
principle, one can also take the values of the c̃i from the
Q4 analysis, which differ from the ci’s by quark mass
renormalizations of the orderM2

π . Taking different sets
of the ci’s from various analyses of the πN system, as
described in the beginning of this section, might not
cause significant variation in description of low-energy
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OBEEFT

Fig. 10. Exchange of ρ-meson (wiggly line), which decays into
two pions (dashed lines) and the corresponding diagrams in
EFT (left-hand panel) and OBE models (right-hand panel).
The shaded blob represents the strong ρN form factor in OBE
models. For remaining notations see figs. 1, 5.

observables in the πN as well as NN systems, but lead
to different scenarios.

– It is also possible that including higher-order loop ef-
fects will reduce the strength of the central part of
effective NN potential even if the ci’s are numerically
large.

– Finally, already at N3LO one has to include new con-
tact interactions with four derivatives, which also con-
tribute in D-waves. These will not only reduce the
cut-off dependence of the phase shifts, but may also
provide additional repulsion and allow to avoid un-
physical deeply bound states. The work by Entem and
Machleidt [30], who constructed a NN potential with-
out deeply bound states by a phenomenological exten-
sion of the NNLO chiral NN force7, may serve as an
indication of the importance of the higher-order con-
tact interactions. To ultimately clarify the situation
one has to perform a complete analysis of the NN sys-
tem at order N3LO.

It is interesting to understand the reason of (possibly)
different scenarios in the EFT approach and in more phe-
nomenological conventional boson exchange (BE) models.
It has been pointed out in ref. [16] that the LECs c3,4 get
the dominant contributions from the intermediate ∆ exci-
tation. Also, the σ- and ρ-mesons have been shown to play
an important role in the saturation of the ci’s. In particu-
lar, the constant c1 is completely saturated by the σ [16].
Let us now check whether these mechanisms of resonance
saturation of the ci’s are also realized in the OBE models
of the NN interaction. While the resonance saturation of
the ci’s by heavy mesons can, in principle, be interpreted
in terms of OBE contributions as shown in fig. 10, where
the pion loop in the graph in the middle of that figure
contributes to the form factor of the corresponding heavy
meson, the saturation by the ∆ excitation cannot be rep-
resented in an appropriate way within the OBE models.
Thus, a large portion of the subleading chiral TPE is ab-
sent in the conventional NN forces.

A more detailed investigation of the two-pion exchange
within the conventional many-boson exchange formalism
gives rise to a better understanding of the reasons why the

7 To be precise, they included the N3LO contact interac-
tions and allowed for a partial-wave dependent cut-off varia-
tion. Thus, this extension is not an EFT approach.

BEM EFT with ∆ EFT without ∆

Fig. 11. Representation of the πρ exchange diagram within
EFT approaches with and without explicit ∆. BEM stays for
boson exchange models. For notations see fig. 10.

intermediate ∆ plays only a modest role in the NN inter-
action. In the Bonn model of ref. [31], which also allows for
two-boson exchanges, one finds strongly attractive contri-
butions from TPE. Note that this model also takes into
account ∆ excitations in the intermediate states. The dia-
grams with intermediate∆ excitations have been shown to
give the dominant contribution to the uncorrelated TPE.
While the TPE model successfully describes high angular-
momentum partial waves, quantitative description of low
partial waves appears to be impossible. It is even stated in
ref. [31] that “the 2π-contribution appears, in general, too
attractive and a consistent and quantitative description
of all phase shifts can never be reached”. It was shown
that the strongly attractive contribution of the TPE in
low partial waves is to a large extent cancelled by the πρ
diagrams. The authors of ref. [32] came to a similar conclu-
sion. The more detailed work on correlated πρ exchange
has been performed within the conventional formalism by
Holinde and collaborators, see [33]. In fig. 11 we show one
specific example of the πρ exchange with the correspond-
ing representation in the EFT approach. It is easy to see
that the NLO8 contribution to the effective potential from
the diagram shown in fig. 11 only leads to renormalization
of the corresponding LO contact interactions and thus will
only influence the S-wave phase shifts. Thus, one needs to
go to higher orders beyond NNLO in the low-momentum
expansion to see effects of the πρ exchange on the phase
shifts in P - and D-waves. The better way to observe the
cancellation between the ππ and πρ exchanges might be
to include vector mesons as explicit degrees of freedom in
the EFT. That would however require a consistent power-
counting scheme, which has not yet been constructed.

The study of the TPE within the Bonn model [35]
also indicates a very important role of relativistic effects
for diagrams with intermediate ∆’s. Incorporating rela-
tivistic corrections using IR regulated covariant baryon
CHPT [36] within the EFT formalism has already been
shown to reduce the strength of the subleading TPE by
about 30% [37].

Although phenomenological boson exchange models
provide a plausible explanation of the fact that the ∆-
resonance does not play a significant role in NN scatter-
ing, additional model-independent analysis is needed to
improve on our understanding of the TPE. In particular,

8 Note that if the ∆-resonance is included explicitly via the
“small scale expansion” [34], the strong attractive central con-
tribution to the TPE appears already at NLO and not at
NNLO.
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Fig. 12. Fits and predictions for the S-waves for nucleon labo-
ratory energies Elab below 200MeV (0.2GeV). Left/right pan-
els: NLO/NNLO* results. The cut-off is chosen between 500
and 600MeV leading to the band. The filled circles depict the
Nijmegen PSA results [26].

more work on pion-nucleon scattering (dispersive versus
chiral representation), new dispersive analyses and more
precise low-energy data are needed to pin down these
LECs to the precision required here.

Motivated by the observed cancellation between the
ππ and πρ exchanges and by the fact that the ∆ is not
included as an explicit degree of freedom in existing OBE
models and is supposed to play only a modest role for NN
interactions at low energies, we constructed the NNLO*
version of the effective potential [38,39], in which we basi-
cally subtracted the ∆ contributions from these LECs and
allowed for some fine tuning. This results in numerically
reduced values of the c3,4:

c3 = −1.15 GeV−1, c4 = 1.20 GeV−1. (3.7)

As a consequence, the attraction of the central potential
corresponding to chiral TPE is reduced compared to the
NNLO calculation of ref. [9]. Differently to the NNLO po-
tential, we also incorporated in the NNLO* version the
leading isospin-violating effect due to the pion mass dif-
ferences in the OPE.

We are now in the position to discuss numerical re-
sults of the NNLO* potential. First, we make some gen-
eral remarks. For NLO (NNLO*), we fit to the Nijmegen
S- and P -wave phases and the ε1 mixing parameter up to
Elab = 50 (100) MeV. These phase shifts at higher energies
and for all higher partial waves are therefore predictions.
Throughout, we show the phase shifts using the exponen-
tial regulator given in eq. (2.9). We are now able to use the
same cut-off range as we did at NLO. Varying the cut-off
Λ between 500 and 600 MeV, we find a weakly changing
χ2/ per degree of freedom. Also, for this range of the cut-
off we do not encounter any unphysical bound state in any
partial wave, which is in stark contrast to the NNLO re-
sults of [9]. We note that one finds an increasing number
of such deep bound states with increasing cut-off, eventu-
ally leading to a limit cycle behavior (for details, see [3]).
The theoretical predictions at NLO and NNLO* for this
cut-off range are indicated as bands in the following fig-
ures. In most partial waves these bands get thinner when
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Fig. 13. Fits and predictions for the P -waves and the mix-
ing parameter ε1 for nucleon laboratory energies Elab below
200MeV (0.2GeV). Left/right panels: NLO/NNLO* predic-
tion. The cut-off is chosen between 500 and 600MeV as shown
by the band. The filled circles depict the Nijmegen PSA results.

going from NLO to NNLO* and are also visibly closer to
the data (Nijmegen PSA). This is what one expects from
a converging EFT.

Let us now regard different partial waves. In fig. 12
we show the two S-waves. We find a good description at
NNLO* up to 200 MeV, which is comparable with (in case
of the 1S0 partial wave slightly worse than) the NNLO
results shown in ref. [9].

Consider next the P -waves and the mixing angle ε1
shown in fig. 13. The most visible improvement from NLO
to NNLO* is observed for 3P2 and ε1. We also note that
the description of 3P2 is better than in the NNLO case
shown in ref. [9]. While the NNLO corrections to the NLO
results for the 1P1, 3P1 and 3P2 partial waves (see fig. 5
in ref. [9]) go in the right directions, the observed effects
turn out to be too large and lead to significant deviations
from the data. This is cured in the NNLO* version, as can
be seen from fig. 13. The NNLO* and NNLO results for
the 3P0 partial wave are very similar to each other and to
the NLO calculation.

Let us now discuss the D-waves and the mixing angle
ε2. These are of particular interest since at NNLO* no pa-
rameters enter and we already discussed the strong cut-off
sensitivity found at NNLO. As shown in fig. 14, this cut-off
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Fig. 14. Predictions for the D-waves and the mixing param-
eter ε2 for nucleon laboratory energies Elab below 200MeV
(0.2GeV). Left/right panels: NLO/NNLO* prediction. The
cut-off is chosen between 500 and 600MeV as shown by the
band. The filled circles depict the Nijmegen PSA results.

sensitivity is sizeably reduced at NNLO* (in comparison
to NNLO) and one obtains an overall good description of
all D-waves up to laboratory energies of about 200 MeV.
We remark that the important ππ correlations which are
at the heart of the dramatic improvement in 3D3 from
NLO to NNLO* are still present (as in NNLO) since they
are driven by the physics behind the LEC c1. Note also
the significant improvement for the ε2.

The NNLO* corrections get weaker for F - and higher
partial waves. In contrast to the strong NNLO effects in
the F -waves, which cause significant deviations of the
phase shifts for the results of the Nijmegen PSA, the
NNLO* results can be viewed as small corrections to the
NLO calculations, see fig. 15. Indeed, in most cases the dif-
ference between the NLO and NNLO* predictions is very
small. The only exception is observed for the 3F4 partial
wave. Here the NNLO* corrections go in the right direc-
tion but are still not sufficient to reproduce the phase shift
appropriately at energies larger than 50–100 MeV.

The peripheral partial waves (G,H, I, . . .) are mostly
well described. Most of these are dominated by OPE. How-
ever, in very few cases the large values of the ci’s were
needed to bring the prediction in agreement with the data,
see refs. [27,9]. In the NNLO* potential, the weakened
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Fig. 15. Predictions for the F -waves and the mixing param-
eter ε3 for nucleon laboratory energies Elab below 200MeV
(0.2GeV). Left/right panels: NLO/NNLO* prediction. The
cut-off is chosen between 500 and 600MeV leading to the band.
The filled circles depict the Nijmegen PSA results.

TPE does not provide enough strength as, e.g., seen in
3G5, cf. fig. 16. Similar remarks hold for the H and I
phase shifts; we refrain from showing these here.

We now turn to the bound-state (deuteron) properties.
We have not fine-tuned the parameters to exactly repro-
duce the binding energy. It is already described within 2%
for the range of cut-offs considered here. In table 1 we col-
lect the deuteron properties at NLO and NNLO* (for Λ =
500 and 600 MeV) in comparison to the NNLO results (ob-
tained with an exponential regulator with Λ = 1.05 GeV)
and the CD-Bonn potential (as one generic high-precision
potential). Most deuteron properties are well reproduced
and improve when going from NLO to NNLO*. We also
note that all NNLO* predictions (except the one for the
quadrupole moment) are between the NLO and NNLO re-
sults9. The quadrupole moment is only slightly improved
at NNLO*, while the NNLO correction for this quantity
goes in the wrong direction. One, however, still observes a
discrepancy of about 7% to the experimentally observed

9 One should keep in mind, that while the NLO and NNLO*
results are given within the theoretical uncertainty, which cor-
responds to a cut-off variation, the results at NNLO are only
shown for the optimal choice of the cut-off Λ = 1050MeV.
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Table 1. Deuteron properties derived from our chiral potential at NLO and NNLO* (for the cut-off range considered throughout)
compared to the NNLO results of [9], one “realistic” potential and the data. Here, Ed is the binding energy, Qd the quadrupole
moment, η the asymptotic D/S ratio, rd the root-mean-square matter radius, AS the strength of the asymptotic S-wave
normalization and PD the D-state probability.

NLO NNLO*

500MeV 600MeV 500MeV 600MeV
NNLO CD-Bonn Exp.

Ed (MeV) −2.152 −2.165 −2.182 −2.189 −2.224 −2.225 −2.225

Qd (fm2) 0.265 0.266 0.265 0.268 0.262 0.270 0.286

η 0.0248 0.0248 0.0247 0.0247 0.0245 0.0255 0.0256

rd (fm) 1.975 1.975 1.970 1.969 1.967 1.966 1.967

AS (fm−1/2) 0.862 0.866 0.871 0.874 0.884 0.885 0.885

PD(%) 3.17 3.62 3.65 4.52 6.11 4.83 –
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Fig. 16. Predictions for the G-waves and the mixing param-
eter ε4 for nucleon laboratory energies Elab below 200MeV
(0.2GeV). Left/right panels: NLO/NNLO* prediction. The
cut-off is chosen between 500 and 600MeV leading to the band.
The filled circles depict the Nijmegen PSA results.

value (see, however, the recent discussion by Phillips [40]
why this failure is not unexpected). It has also been noted
in [41] that fine-tuning the binding energy can slightly im-
prove the prediction for Qd. The NNLO* and NNLO cor-
rections go in the wrong (right) direction for the asymp-
totic D/S ratio η (the asymptotic S-wave normalization
AS). The improvement for AS at NNLO* is significant
compared to NLO but still leaves space for N3LO correc-
tions. The same holds true for the root-mean-square mat-
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Fig. 17. Deuteron wave functions at NLO (left panels) and
NNLO* (right panels) in coordinate space. The solid (dashed)
lines correspond to the cut-off Λ = 500MeV (Λ = 600MeV).

ter radius rd. We note that the (unobservable) D-state
probability is reduced as compared to the NNLO result
and agrees more with the one found using CD-Bonn po-
tential.

The NNLO* deuteron coordinate space S- andD-wave
functions u(r) and w(r), respectively, are shown in fig. 17.
By construction, they have no nodes and agree quite well
with, e.g., the CD-Bonn wave functions. This lets one ex-
pect that the NNLO* potential when applied to the 3N
and 4N systems gives results closer to calculations based
on conventional potentials as does NNLO. We will discuss
this issue in the following two sections.

Let us now summarize the presented numerical find-
ings for the 2N low-energy observables. Altogether it can
be seen that the NNLO* potential leads to results, which
are significantly improved compared to the NLO ones and
allows for a quantitatively rather good description of the
np phase shifts up to Elab ∼ 200 MeV. While the results
for observables at NNLO* and NNLO seem to be of com-
parable quality and in many cases do not significantly dif-
fer from each other, these two versions of the chiral poten-
tial suggest quite different scenarios, as discussed above. It
is difficult to give preference to the NNLO* or the NNLO
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version of the chiral potential. In principle, the LECs ci
should be taken from the analysis of πN scattering and no
readjustment should occur, if sufficiently many terms of
the chiral expansion of the πN scattering amplitude ap-
pear in the TPE potential and the πN parameters are pre-
cisely known. However, with the presently available best
determinations of these LECs at Q2 and Q3, one gets a
very strong attractive central part of the TPE and, as a
consequence, encounters unphysical deeply bound virtual
states. Further, they lead to an unconventional balance
between two- and many-nucleon forces in systems with
three (or more) nucleons. On the other hand, boson ex-
change phenomenology clearly indicates the suppression
of contributions with delta intermediate states based on
cancellations with, e.g., πρ exchanges. Such a scenario is
realized in the NNLO* potential, which does not lead to
unphysical bound states in the NN system for reasonable
choices of the cut-off. Progress can come from different di-
rections: Further investigations of the πN system at higher
orders in chiral expansion as well as new data (eventu-
ally combined in dispersion relations) may allow for more
precise determination of the ci’s, so that one would be
able to discriminate the physically relevant scenarios of
the NN interaction. On the other hand, the final word
on the choice of regulator is not yet spoken —one may
still contemplate the construction of a coordinate-space
regulator that modifies the TPE at short distances such
that no unphysical bound states appear. At present, this is
only a speculation (we refer to [42] for some related work).
Clearly, more work in this direction is mandatory. For the
time being we consider it legitimate to use the NNLO*
potential in applications to the 3N and 4N systems. For
the sake of completeness, we will, however, briefly discuss
in the next section NNLO predictions for the 3N system,
before we switch to the central issue of this paper and
present the NNLO* results for 3N and 4N systems.

4 NNLO predictions for the 3N system

As has been shown in [9] the NNLO NN forces describe the
Nijmegen NN phase shift values significantly better than
the NLO ones. We would like to remind the reader that
there occur spurious bound states in S-, P - and D-waves,
as already mentioned in the preceeding section. As a con-
sequence of these deeply bound states, the deuteron wave
function at NNLO has nodes below about 1 fm, which are
not present at NLO (and NNLO*) or using conventional
NN forces. In agreement with the correct description of the
low-energy 3S1-3D1 phase shift parameters those nodes
also do not influence the low-energy deuteron properties:
its binding energy, the asymptotic D/S ratio, the root-
mean-square matter radius, the asymptotic S-wave nor-
malization constant and the quadrupole moment, which
are in good to fair agreement with the experimental val-
ues.

In turning to the 3N system one encounters in the Fad-
deev formulation NN t-matrices which are taken off the

energy shell. The energy argument is

E2 = E − 3
4m
q2, (4.1)

where E is the fixed 3N energy and (3/4m)q2 the varying
kinetic energy of the third particle in relation to the pair
of nucleons interacting via the NN t-matrix. Since q varies
between 0 and infinity one necessarily hits the spurious
bound-state energies, which occur as poles of the NN t-
operator. Physically spoken this has the consequence that
the normal 3N bound state is not stable but decays into
two fragments, a deeply bound spurious NN bound state
and a nucleon. In practice this decay is rather weak, how-
ever, and can be neglected since the physical 3N bound
state has little overlap with the short-ranged spurious NN
bound state. In addition, one has to expect that there will
be spurious 3N bound states at extremely large negative
energies in the GeV region. Calculating the 3N observ-
ables in the presence of deeply bound spurious states in
the NN system requires some precautions. Of course, the
ultimate way to calculate 3N observables in the presence
of deeply bound NN states would be to treat the poles
of the NN t-operator explicitly in the corresponding in-
tegral equation. The much easier approximate way is to
restrict the virtual q-values such that E2 does not reach
the energies of the spurious bound states, which are in
the GeV region. Alternatively, one can transform the two-
body Hamiltonian in such a manner that the NN phases
do not change but the spurious bound-state energies are
moved towards high-positive energies, where they cause
no technical obstacles. This can be achieved for instance
by the following simple change of the two-nucleon force
(starting from the Hamiltonian H = H0 + V ):

Ṽ = V +
∑

i

|Ψi〉αi〈Ψi| (4.2)

leading to the modified Hamiltonian H̃ = H0 + Ṽ with
shifted eigenvalues corresponding to spurious eigenstates,

H̃|Ψi〉 = (Ei + αi)|Ψi〉, (4.3)

where the αi are sufficiently large-positive energies, |Ψ〉i
the spurious bound states and Ei the binding energy of
the spurious state |Ψi〉. Note that such a projection does
not influence the 2N phase shifts. Also the deuteron wave
function remains unchanged.

In this work we do not aim to apply the NNLO poten-
tial to the 3N and 4N systems and only want to demon-
strate that one needs strong 3NFs to describe the data.
The approximate methods described above are therefore
sufficient for our present purpose. We solved the 3N Fad-
deev equation for the triton using Ṽ instead of V and this
for NNLO. With the cut-off Λ = 1000 MeV in the NN sys-
tem we found for triton binding energy E = −3.8 MeV.
This number turned out to be nearly independent of the
actual values of αi (which are of the order of a few GeV).
A very close value arises if on sticks to the original NN
force V at NNLO and restricts the range of q-values as
mentioned above. One has to conclude that this form of
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the NN force requires strong 3N forces to account for the
missing binding energy. Notice, however, that these re-
quired 3N forces may still be much weaker than the corre-
sponding 2N ones. Indeed, we found an expectation value
for the potential energy in the triton at NNLO of about
−172 MeV, which is much larger than the one observed
for various high-precision potentials of the order −40 to
−50 MeV10. The corresponding large value for the kinetic
energy has, in principle, to be expected due to the addi-
tional nodes in the deuteron and triton wave functions in
the short-distance range, which are caused by the deeply
bound states.

In view of the results for the triton binding energy one
also has to expect that theoretical 3N scattering observ-
ables based only on the NNLO NN force (i.e. neglecting
the 3NFs) will be in conflict with the data. This is indeed
the case as shown in fig. 18 for a few examples.

Thus, we conclude that taking into account only the
2N interaction at NNLO and neglecting the correspond-
ing 3NFs does not allow for a correct description of the
3N observables. This presumably will be corrected by the
inclusion of the 3N forces, which because of consistency in
the power counting has to be taken into account at NNLO.
It will be interesting in the future to check this statement
explicitely.

5 3N and 4N predictions with the NNLO*
NN potential

We use the Faddeev-Yakubovsky scheme to solve for the
3N and 4N bound states and the 3N scattering observ-
ables as described in [8,46]. The calculations are fully con-
verged with respect to the number of partial-wave states
10 Thus, the missing binding energy of about 4MeV for the
triton to be provided by 3N forces is still much smaller com-
pared to the strength of the 2N interaction.

Table 2. Theoretical 3H and 4He binding energies for differ-
ent cut-offs Λ at NLO and NNLO* compared to the AV-18
and CD-Bonn predictions (point Coulomb interaction pertur-
batively removed), the experimental 3H binding energy and the
Coulomb corrected 4He binding energy in MeV. The kinetic en-
ergies T (in MeV) and S-, P - and D-state probabilities for 4He
are also shown.

Potential E(3H) E(4He) T S (%) P (%) D (%)

NLO, 500 −8.544 −29.57 61.4 94.71 0.07 5.22
NLO, 600 −7.530 −23.87 77.6 92.60 0.11 7.29
NNLO*, 500 −8.590 −29.96 62.2 93.65 0.10 6.25
NNLO*, 600 −8.245 −27.87 64.9 90.61 0.17 9.22
AV-18 −7.628 −24.99 97.8 85.89 0.35 13.76
CD-Bonn −8.013 −27.05 77.2 89.06 0.22 10.72
Exp. −8.48 −29.00 – – – –

and standard numerical discretizations. Table 2 shows the
results for the 3N and 4N binding energies using the NLO
and the NNLO* NN potentials. Note that for the NLO
version the numbers slightly different from the ones pub-
lished in [7] appear since we have now taken into account
the leading isospin-violating effect due to the charged-to-
neutral pion mass difference in the OPE.

We see a clear reduction of the cut-off dependence in
going from NLO to NNLO*, as it is expected from a con-
verging EFT. For reasons of comparison, we also display
the kinetic energy and the probabilities of the various
ground-state components (S, P,D) in 4He. The resulting
binding energies for NNLO* are near the experimental
data and larger than the values typically achieved with
conventional potentials. The results for two representa-
tives, AV-18 and CD-Bonn, are also displayed in table 2.
Note that the NNLO* results encompass the experimen-
tal values, quite in contrast to the realistic potentials. We
remark, however, that the chiral NN forces employed up
to now are for the np system and therefore do not yet take
all relevant isospin-violating effects into account11. Expe-
rience tells us that this leads to an unphysical increase
in the binding energy of about 200 keV (1 MeV) in 3H
(4He). Nevertheless, in relation to conventional forces one
ends up close to the experimental data for 3H and 4He us-
ing the NNLO* NN potential and consequently will need
smaller contributions of 3N forces than using conventional
NN forces.

For 3N scattering we show in figs. 19–24 elastic nd
scattering observables for laboratory energies of 3, 10 and
65 MeV, in order, and in fig. 25 nd break-up cross-sections
for two arbitrarily selected kinematical configurations at
Elab = 13 MeV. In each case the NLO are compared to
the NNLO* predictions and the ones based on the mod-
ern high-precision potentials. Like for the bound-state en-
ergies we find in all cases a much reduced cut-off depen-
dence for NNLO* in comparison to NLO. Also, at the
highest energy we considered, 65 MeV, one observes now
a strong improvement compared to the NLO results, which
in some cases deviate significantly from the data. We also

11 Such effects can be dealt with in nuclear EFT as discussed,
e.g., in [11].
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Table 3. 3Pj np phase shifts at NLO and NNLO* for the smallest and largest values of the cut-off compared to the phases
based on the CD-Bonn potential [52] and to the Nijmegen PSA [26].

NLO NNLO*
Tlab (MeV)

500MeV 600MeV 500MeV 600MeV
CD-Bonn NPSA

3P0

1 0.19 0.19 0.17 0.17 0.18 0.18

5 1.68 1.67 1.59 1.58 1.61 1.63(1)

10 3.74 3.72 3.62 3.58 3.62 3.65(2)

25 8.28 8.22 8.26 8.16 8.10 8.13(5)

50 10.90 10.84 11.12 11.01 10.74 10.70(9)

100 8.27 8.31 8.34 8.43 8.57 8.46(11)

150 2.52 2.52 1.88 2.15 3.72 3.69(14)

200 −3.70 −4.11 −5.43 −5.23 −1.55 −1.44(17)
3P1

1 −0.12 −0.12 −0.11 −0.11 −0.11 −0.11

5 −0.99 −0.99 −0.91 −0.92 −0.93 −0.94

10 −2.17 −2.16 −2.02 −2.02 −2.04 −2.06

25 −5.05 −5.03 −4.82 −4.83 −4.81 −4.88(1)

50 −8.35 −8.32 −8.22 −8.23 −8.18 −8.25(2)

100 −12.61 −12.66 −13.49 −13.47 −13.23 −13.24(3)

150 −15.56 −15.94 −18.48 −18.43 −17.51 −17.46(5)

200 −17.80 −18.86 −23.64 −23.65 −21.38 −21.30(7)
3P2

1 0.02 0.02 0.02 0.02 0.02 0.02

5 0.24 0.24 0.25 0.25 0.26 0.25

10 0.70 0.70 0.71 0.71 0.72 0.71

25 2.87 2.89 2.64 2.65 2.60 2.56(1)

50 8.05 8.29 6.29 6.34 5.93 5.89(2)

100 20.32 22.60 11.31 11.70 11.01 10.94(3)

150 29.73 35.97 12.11 13.04 13.98 13.84(4)

200 34.02 44.30 9.92 11.31 15.66 15.46(5)

observe that the theoretical uncertainty due to the cut-
off variation is sometimes smaller than the spread using
the various phase equivalent conventional potentials. Note
that most of the deviations of the theoretical predictions
from the pd data in case of the tensor-analyzing powers
and the differential cross-section at low energies and at
forward angles are due to the Coulomb pp force [53].

Let us now take a closer look at the calculated elas-
tic observables. The differential cross-section at NNLO*
agrees well with the data and with the predictions based
upon various high-precision potentials, cf. fig. 19, and is
strongly improved at 65 MeV compared to the NLO re-
sults. The vector-analyzing power of elastic nd scattering
at low energies is well known to be underpredicted by the
standard NN potential models, see fig. 20, right panel, and
this remains true even after inclusion of the existing 3N
forces based on boson exchanges. As reported in ref. [7]
and shown in the left panel of fig. 20, the NLO predic-
tions at 3 MeV are essentially in agreement with the data,
while at 10 MeV one even observes a slight overestimation
in maximum. The NLO results for Ay at 65 MeV show
significant deviations from the data. Our predictions at

NNLO* are much closer to the results based upon the
high-precision potentials, i.e. the data are underpredicted
at low energies (3 and 10 MeV) and reproduced accurately
at higher ones (65 MeV), cf. fig. 20. Although some im-
provement with respect to the predictions based upon the
high-precision potentials can be seen at 3 and especially
at 10 MeV, the pending puzzle is now back at NNLO*.
As pointed out in ref. [54], one possible reason for the sig-
nificant change of about 20% in the Ay predictions when
going from NLO to NNLO* may be the deviations of the
np 3Pj phase shifts from the data at NLO. These chan-
nels are well known to be very important for the nd Ay,
see, e.g., [8]. In table 3 we demonstrate that these partial
waves are now much better described at NNLO*. We also
remind the reader that in contrast to high-precision poten-
tial models, which are constructed to perfectly reproduce
the NN data below the pion production threshold, in EFT
one does not aim at a perfect description of the data by
increasing the phenomenological content of the NN inter-
action but rather at performing systematic order-by-order
calculations. At each specific order in the low-energy ex-
pansion (in our case chiral expansion) one has some theo-
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retical error due to missing higher-order terms, which can
be estimated. Considering our results for Ay at NLO one
should therefore keep in mind the level of precision of the
NLO approximation. Further, since the nd Ay is a very
sensitive observable and is strongly affected by changing
the np 3Pj phase shifts by only few percent, the large un-
certainty for this specific observable has to be expected in
the EFT approach.

The situation with the deuteron vector-analyzing
power iT11 is very similar to the one with Ay. This is
shown in fig. 2112. The NNLO* predictions for the tensor-
analyzing powers T20 and T21 at 3 and 10 MeV as well
as for T22 at all three energies follow the band made up
from the variations among the high-precision potentials.
Remarkably, our results for T20 and T21 are even signifi-
cantly closer to the data at 65 MeV.

In case of the specific 3N break-up results shown in
fig. 25 the chiral force predictions are equally off the data
as the predictions of the conventional forces. In case of the
upper row the deviations in the quasi-free peak to the pd
data might be due to Coulomb force effects, whose precise
size is still unknown. The lower row addresses the space-
star anomaly. We underestimate significantly the two sets
of nd data, which are also far off the pd data. As in the case
of elastic-scattering observables the NNLO* predictions
follow the band made up from the various high-precision
potentials. Again the size of Coulomb force effects is un-
known. For more information on these break-up configu-
rations see refs. [8,56].

12 Notice that only pd data exist for this observable. Inclusion
of the Coulomb interaction will lead to significant underesti-
mation of the iT11 [53].

It is also interesting to compare our results to the ones
shown in ref. [54], in which the same nd scattering ob-
servables have been calculated using the phenomenological
high-precision extension of the chiral potential by Entem
and Machleidt [30]. In fact, our results for these observ-
ables show a remarkable similarity to the ones presented in
this reference, i.e. both predictions agree with the calcula-
tions based upon the conventional high-precision potential
models and with the data in most cases and are slightly
closer to the data for T20 and T21 at 65 MeV. The only
significant differences between our results and the ones of
ref. [54] are observed for Ay (and iT11) at low energies
(3 and 10 MeV), which are slightly improved in case of
the NNLO* version. It is very gratifying to see that at
least up to Elab = 65 MeV our NNLO* potential with
11 adjustable parameters works for nd scattering equally
well as the one of ref. [30] with 46 adjustable parameters.
This remarkable agreement may serve as a nice demon-
stration of the power and the advantage of an EFT with
consistent power counting compared to more phenomeno-
logical approaches: performing chiral expansion of the nu-
clear force up to some definite order by inclusion of all
relevant diagrams and counter terms allows to describe
low-energy observables with the same precision regardless
of the kind of system the theory is applied to (2N, 3N,. . .).
From the point of view of EFT, it makes not much sense
to improve the description of the 2N observables alone by
a phenomenological extension of the short-range part of
the NN force. As one can see comparing figs. 19–24 with
the corresponding ones of ref. [54], this does not lead to
an improvement in describing other systems at low en-
ergy (i.e. the 3N system). In order to reduce the theoret-
ical uncertainty, one should instead go to higher orders,
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which requires the inclusion of 3N, 4N, . . ., interactions
as well as more pion exchanges in the 2N force. Further-
more, the whole concept of developing phenomenological
NN potentials, which reproduce the NN data perfectly
with χ2/datum = 1 is in conflict with the general EFT
philosophy: at each fixed finite order of the low-energy ex-
pansion one necessarily has some definite uncertainty in
description of observables. Adjusting the cut-off parame-
ters in various partial waves to improve the fit to data,
as has been done in ref. [30], is not acceptable from the
point of view of pure EFT, where the cut-off dependence
of observables may serve as an estimation of the theoreti-
cal error.

It is now an urgent task to encode the three topo-
logically different 3N forces, which have to be taken into
account at NNLO (NNLO*) and to determine the corre-
sponding parameters in the 3N system. Pioneering studies
in [58] indicate that specifically the diagram in fig. 5 of this
reference might have a chance to solve the Ay puzzle. This
extensive work will be dealt with in a forthcoming paper.

6 Summary

The concept and the resulting NN forces at LO, NLO
and NNLO of χPT have been reviewed. Our approach is
based on the method of unitary transformation applied to
the most general chirally invariant Hamiltonian expressed
in terms of pion and nucleon fields. This method leads
to energy-independent nuclear forces, a property which is
important for the application to more than two nucleon
systems. The NNLO NN forces driven by the low-energy
constants c1,3,4 lead to deeply bound unphysical NN states
in low partial waves if the values c1,3,4 are taken from typi-
cal πN data analysis13. While this has no negative observ-
able consequences in the NN system, since the spurious
NN bound-state energies are outside the realm of validity
of χPT, they lead to a scenario for nuclear physics which
is quite different from the one driven by conventional nu-
clear forces. First, the central part of the NN potential
turns out to be much more attractive as is expected from
conventional approaches. Further, the predictions for 3N,
4N, . . ., binding energies based upon the purely NN forces
are much lower, far below the experimental values, and
3N scattering observables deviate dramatically from the
data. Therefore, unlike for conventional NN forces, which
to a very large extent describe the data, and 3N forces are
only needed as a relatively small additional contribution,
the 3N force contributions here will be very essential. We
provided arguments based upon experiences with meson
theoretical potentials supporting the choice of c3,4 con-
stants, which are numerically smaller and where interme-
diate ∆ contributions are subtracted out. Based on those
values we introduced a novel NNLO* NN force which de-
scribes NN phase shifts with comparable quality as the
NNLO one up to about Elab = 200 MeV. These NNLO*

13 Note that this statement might not hold true for different
regularization schemes.

potential is free of spurious bound states and leads to pre-
dictions in the 3N and 4N systems which are rather close
to the ones familiar from conventional high-precision NN
forces. It is now of highest interest to include the 3N forces
which should be taken into account at that order in χPT.
This work is in preparation.

In contrast to conventional nuclear forces this chiral
approach is systematic in the sense of power counting and
nuclear forces are expected to be constructed in a conver-
gent scheme. Therefore the step to NNNLO should be per-
formed in order to see whether convergence can be reached
and long pending problems with conventional forces like
the low-energy analyzing power Ay can be solved without
ad hoc assumptions.
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8. W. Glöckle et al., Phys. Rep. 274, 109 (1996).
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